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Linear Algebra 

Chapter one 

Matrices 

A matrix is a rectangular array of numbers written between rectangular brackets, 

as in: 

[
               
               
                 

] 

It is also common to use large parentheses instead of rectangular brackets, as in: 

(
               
               
                 

) 

We represent the matrices as a capital letters, A,B,C,…, ete, and the elements of the 

matrix as a small letters , a,b,c,.. etc.  

In general, With a real numbers m,n, a real-valued (m,n) matrix A is an m·n-tuple of 

elements aij, i = 1,2,…,m and  j = 1,2,…,n, which is ordered according to a 

rectangular scheme consisting of m rows and n columns: 

 

Therefore, the matrix A can be represents as            and the matrix B can be 

represents as :            and so on. 

An important attribute of a matrix is its size or dimensions, i.e., the numbers of 

rows and columns. The matrix above has 3 rows and 4 columns, so its size is 3 ×4. 

A matrix of size m × n is called an m × n matrix. 

The elements (or entries or coefficients) of a matrix are the values in the array. 

The i,j element is the value in the ith row and jth column, denoted by double 

subscripts: the i,j element of a matrix A is denoted     (or     when i or j is 

more than one digit or character). The positive integers i and j are called the (row 

and column) indices. If A is an m × n matrix, then the row index i runs from 1 to 

m and the column index j runs from 1 to n. Row indices go from top to bottom, 

so row 1 is the top row and row m is the bottom row. Column indices go from left 

to right, so column 1 is the left column and column n is the right column. 
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If the matrix above is B, then we have               . The row index 

of the bottom left element (which has value 4:1) is 3; its column index is 1. 

Two matrices are equal if they have the same size, and the corresponding entries 

are all equal. 

Matrix indexing. As with vectors, standard mathematical notation indexes the 

rows and columns of a matrix starting from 1. In computer languages, matrices 

are often (but not always) stored as 2-dimensional arrays, which can be indexed in 

a variety of ways, depending on the language. Lower level languages typically use 

indices starting from 0; higher level languages and packages that support matrix 

operations usually use standard mathematical indexing, starting from 1. 

Square, tall, and wide matrices. A square matrix has an equal number of rows 

and columns. A square matrix of size n × n is said to be of order n. A tall matrix 

has more rows than columns (size m × n with m > n). A wide matrix has more 

columns than rows (size m × n with n > m). 

Column and row vectors. An n-vector can be interpreted as an n × 1 matrix; we 

do not distinguish between vectors and matrices with one column. A matrix with 

only one row, i.e., with size 1 × n, is called a row vector; to give its size, we can 

refer to it as an n-row-vector. As an example, 

[ -1.2   -3 0] 

is a 3-row-vector (or 1 × 3 matrix). To distinguish them from row vectors, vectors 

are sometimes called column vectors.  

[
 
 
   

] 

A (1 × 1) matrix is considered to be the same as a scalar. 

Columns and rows of a matrix. An m×n matrix A has n columns, given by (the 

m-vectors. 

   [

   

   

 
   

]                

The same matrix has m rows, given by the (n-row-vectors) 

   [          ]               

As a specific example, the 2 × 3 matrix 

[
   
   

] 
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has firs raw [ 1    2   3], (which is a 3-row-vector or a 1 × 3 matrix), and second 

column 

[
 
 
] 

(which is a 2-vector or 2 × 1 matrix), also written compactly as (2; 5).  

Block matrices and submatrices. It is useful to consider matrices whose entries are 

themselves matrices, as in 

  [
  
  

]   

where B, C, D, and E are matrices. Such matrices are called block matrices; the 

elements B, C, D, and E are called blocks or submatrices of A. The submatrices 

can be referred to by their block row and column indices; for example, C is the 1,2 

block of A. 

Block matrices must have the right dimensions to fit together. Matrices in the 

same (block) row must have the same number of rows (i.e., the same ‘height’); 

matrices in the same (block) column must have the same number of columns (i.e., 

the same ‘width’). In the example above, B and C must have the same number of 

rows, and C and E must have the same number of columns. Matrix blocks placed 

next to each other in the same row are said to be concatenated; matrix blocks 

placed above each other are called stacked. 

As an example, consider: 

  [   ]     [  ]   [
   
   

]    [
 
 
]  

Then the block matrix A above is given by 

  [
     
    
    

] 

(Note that we have dropped the left and right brackets that delimit the blocks. 

This is similar to the way we drop the brackets in a 1 × 1 matrix to get a scalar). 

We can also divide a larger matrix (or vector) into ‘blocks’. In this context the 

blocks are called submatrices of the big matrix. As with vectors, we can use colon 

notation to denote submatrices. If A is an m × n matrix, and p, q, r, s are integers 

with 1 ≤ p ≤ q ≤ m and 1 ≤ r ≤ s ≤ n, then Ap:q;r:s denotes the submatrix 
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[
 
 
 
 

             

                    

   
             ]

 
 
 
 

 

 

This submatrix has size (q -p + 1) ×(s-r + 1) and is obtained by extracting from 

A the elements in rows p through q and columns r through s. 

For the specific matrix A above, we have 

         [
  
  

]  

Column and row representation of a matrix. Using block matrix notation we 

can write an m × n matrix A as a block matrix with one block row and n block 

columns, 

 

  [       ]   

where aj, which is an m-vector, is the jth column of A. Thus, an m × n matrix 

can be viewed as its n columns, concatenated. 

 

Similarly, an m × n matrix A can be written as a block matrix with one block 

column and m block rows: 

  [

  

  

 
  

]  

where bi, which is a row n-vector, is the ith row of A. In this notation, the matrix 

A is interpreted as its m rows, stacked.  

Examples: 

Table interpretation. The most direct interpretation of a matrix is as a table of 

numbers that depend on two indices, i and j. (A vector is a list of numbers that 

depend on only one index.) In this case the rows and columns of the matrix usually 

have some simple interpretation. Some examples are given below. 

 

 Images. A black and white image with M ×N pixels is naturally represented 

as an M × N matrix. The row index i gives the vertical position of the pixel, 
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the column index j gives the horizontal position of the pixel, and the i; j 

entry gives the pixel value. 

 Rainfall data. An m × n matrix A gives the rainfall at m different locations 

on n consecutive days, so A42 (which is a number) is the rainfall at location 

4 on day 2. The jth column of A, which is an m-vector, gives the rainfall at 

the m locations on day j. The ith row of A, which is n-row-vector, is the 

time series of rainfall at location i. 

 Asset returns. A T × n matrix R gives the returns of a collection of n assets 

(called the universe of assets) over T periods, with Rij giving the return of 

asset j in period i. So R12;7 = -0:03 means that asset 7 had a 3% loss in 

period 12. The 4th column of R is a T-vector that is the return time series for 

asset 4. The 3rd row of R in the n-row-vector that gives the returns of all 

assets in the universe in period 3.  

An example of an asset return matrix, with a universe of n = 4 assets over 

T = 3 periods, is shown in table 1 below: 

 

Table 1 Daily returns of Apple (AAPL), Google (GOOG), 3M (MMM), and Amazon 

(AMZN), on March 1, 2, and 3, 2016 (based on closing prices). 

 

Date AAPL GOOG MMM AMZN 

March 1, 2016 0.00219 0.00006 −0:00113 0.00202 

March 2, 2016 0.00744 −0:00894 −0:00019 −0:00468 

March 3, 2016 0.01488 −0:00215 0.00433 −0:00407 

 

 Prices from multiple suppliers. An m × n matrix P gives the prices of n 

different goods from m different suppliers (or locations): Pij is the price that 

supplier i charges for good j. The jth column of P is the m-vector of supplier 

prices for good j; the ith row gives the prices for all goods from supplier i. 

 

 Contingency table. Suppose we have a collection of objects with two 

attributes, the first attribute with m possible values and the second with n 

possible values. An m × n matrix A can be used to hold the counts of the 

numbers of objects with the different pairs of attributes: Aij is the number 

of objects with first attribute i and second attribute j. (This is the analog 

of a count n-vector, that records the counts of one attribute in a collection.) 

For example, a population of college students can be described by a 4 × 50 

matrix, with the i, j entry the number of students in year i of their studies, 

from state j (with the states ordered in, say, alphabetical order). The ith row 

of A gives the geographic distribution of students in year i of their studies; 

the jth column of A is a 4-vector giving the numbers of student from state j 

in their first through fourth years of study. 
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 Customer purchase history. An n × N matrix P can be used to store a set of 

N customers’ purchase histories of n products, items, or services, over some 

period. The entry Pij represents the dollar value of product i that customer j 

purchased over the period (or as an alternative, the number or quantity of the 

product). The jth column of P is the purchase history vector for customer j; 

the ith row gives the sales report for product i across the N customers. 

 

Matrix representation of a relation or graph.  

Suppose we have n objects labeled 1,2,… , n. A relation     on the set of 

objects {       } is a subset of ordered pairs 

of objects. As an example, R can represent a preference relation among n possible 

products or choices, with (i, j)       meaning that choice i is preferred to choice j. 

A relation can also be viewed as a directed graph, with nodes (or vertices) labeled 

1,2,… , n, and a directed edge from j to i for each (i, j)      . This is typically drawn 

as a graph, with arrows indicating the direction of the edge, as shown in figure 1, 

for the relation on 4 objects 

   {                                   } 

A relation   on {       } is represented as              with  

    {
              

              
                                      

This matrix is called the adjacency matrix associated with the graph. (Some authors 

define the adjacency matrix in the reverse sense, with Aij = 1 meaning there 

is an edge from i to j.) The relation above for example, is represented by the matrix 

  [

    
    
    
    

] 

 

This is the adjacency matrix of the associated graph, shown in figure 1. 

 

Figure 1 The relation (1.1) as a directed graph. 
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Types of matrices 

Before we proceed to study the types of matrices we see it is better to mention some 

expressions that relate to matrices, as follows:      (   )                     

1. We say the entries          a main diagonal of A if i=j. 

2. We say the entries          a secondary diagonal of A if i+j=n+1. 

There are many types of matrices resulting from different application fields. In this 

lecture we focus on some of important matrices which are widely used in this course.  

1. Square matrix: Let          be an      matrix, then   is said to be a 

square matrix if    . 

Examples:   [
  
   

]    [
   
    
    

] 

2. Zero matrix:                                                

                   

Examples:   [
   
   

] 

3. Identity matrix:  A square matrix       is called an identity matrix if it is 

satisfies the condition:      {
        
        

 and is denoted by    

Examples:    [
  
  

]     [
   
   
   

]       [

    
    
    
    

]  

4. Diagonal matrix: The identity matrix is said to be diagonal matrix if at least 

one of the entries of the main diagonal not equal one and is denoted by   . 

Examples:    [
  
   

]     [
   
   
    

]       [

      
    
    
    

] 

The notation diag(  ,   ,…,  ) is used to compactly describe the n×n 

diagonal matrix A with diagonal entries A11 = a1, . . . , Ann = an. As examples, 

the matrices above would be expressed as: 

diog(2,-1) , diog(3,1,-2), diog(0.5,1, …,1) 

 

5. Triangular matrix: A square matrix is called lower triangular if all the 

entries above the main diagonal are zero (or                   . 

Example:   [
   
    
    

] 

Similarly, a square matrix is called upper triangular theallif

entries below the main diagonal are zero (or                   .  

https://en.wikipedia.org/wiki/Main_diagonal
https://en.wikipedia.org/wiki/Main_diagonal
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Example:   [
   
     
   

] 

 

 

 

A triangular matrix is one that is either lower triangular or upper triangular. 

One can see that a matrix that is both upper and lower triangular is called 

a diagonal matrix. 

 

Remarks: 

Two matrices  A and B are said to be equal ( written A=B) if and only if they have the 

same size and every entry in the matrix A is equal to the corresponding entry in B,  

i.e, if  

  (   )   
    (   )    

               

i.               

ii.                           

Example:       [
  
   

]    [
  
   

]          . 

 

Matrix transpose 

If A is an m × n matrix, its transpose, denoted   (or sometimes           is the 

n × m matrix given by          . In words, the rows and columns of A are 

transposed in    . For example, 

     [
  
  
  

]          [
   
   

] 

If we transpose a matrix twice, we get back the original matrix:        . 

Transpose of block matrix. The transpose of a block matrix has the simple form 

(shown here for a 2 × 2 block matrix) 

[
  
  

]
 

 [ 
   

    ] 

where A, B, C, and D are matrices with compatible sizes. The transpose of a block 

matrix is the transposed block matrix, with each element transposed. 

Operations of Transposition 

https://en.wikipedia.org/wiki/Diagonal_matrix
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If A and B are m × n matrices, then the following hold: 

             

          

        

 

Symmetric matrix. 

 A square matrix A is symmetric if                                Symmetric 

matrices arise in several applications. For example, suppose that A is the adjacency 

matrix of a graph or relation. The matrix A 

is symmetric when the relation is symmetric, i.e., whenever        , we also have 

       . An example is the friend relation on a set of n people, where          

means that person i and person j are friends. (In this case the associated graph is 

called the ‘social network graph’). 

Example:  

      [
  
  

]                                      [
  
  

] 

 

Simple operation on matrices 

Matrix Addition and Subtraction 

The first matrix operations we discuss are matrix addition and subtraction. The rules for 

these operations are simple. 

Two matrices can be added (or subtracted) if and only if they have the same 

dimensions. 

To add (or subtract) two matrices of the same dimensions, we add (or subtract) the 

corresponding entries. More formally, if A and B are m × n matrices, then A + B and 

A - B are the m × n matrices whose entries are given by: 

                                entry of the sum=sum of the ij th entry 

                                entry of the difference=difference of the ij th entry 

 

Examples: 

1- [
  
   
   

]  [
   
  
    

]  [
    
   
   

] 

 

2- [
  
   
   

]  [
   
  
    

]  [
   
   
  

] 
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Scalar multiplication 

If A is an m × n matrix and c is a real number, then cA is the m × n matrix obtained by 

multiplying all the entries of A by c. (We usually use lowercase letters c, d, e, ... to 

denote scalars.) Thus, the i jth entry of cA is given by: 

              

In words, this rule is: To get the i jth entry of cA, multiply the i jth entry of A by c. 
Example: 

1.  [
   

  

    

]  [
     

  

    

] 

2.    [
   

  

    

]  [
       

    

        

] 

Properties of matrix addition and scalar multiplication 

If A, B, and C are any m × n matrices and if O is the zero m × n matrix, then the 

following hold: 

A + (B + C) = ( A + B) + C  

A + B = B + A  

A + O = O + A = A  

A + (-A) = O = (-A) + A  

c( A + B) = cA + cB  

(c + d) A = cA + d A  

1A = A  

0A = O  

Associative law 

Commutative law 

Additive identity law 

Additive inverse law 

Distributive law 

Distributive law 

Scalar unit 

Scalar zero 

 

Matrix Multiplication 

It is possible to multiply two matrices using matrix multiplication. You can multiply 

two matrices A and B provided their dimensions are compatible, which means the 

number of columns of A equals the number of rows of B. Suppose A and B are 

compatible, e.g., A has size m × p and B has size p × n. Then the product matrix 

C = AB is the m × n matrix with elements 

    ∑      

 

   

                                                 

There are several ways to remember this rule. To find the i; j element of the 

product C = AB, you need to know the ith row of A and the jth column of B. 

The summation above can be interpreted as ‘moving left to right along the ith row 

of A’ while moving ‘top to bottom’ down the jth column of B. As you go, you 

keep a running sum of the product of elements, one from A and one from B. 

As a specific example, we have 
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[
      
    

] [
    
   
  

]  [
       
   

] 

To find the 1; 2 entry of the right-hand matrix, we move along the first row of 

the left-hand matrix, and down the second column of the middle matrix, to get 

(-1.5)(-1) + (3)(-2) + (2)(0) = -4.5. 

Remarks:  

1. AI=IA=A 

2.                  

3. If       then A and B are said commute. (Note that for 

AB = BA to make sense, A and B must both be square.) 

 
Properties of matrix multiplication. The following properties hold and are easy 

to verify from the definition of matrix multiplication. We assume that A, B, and 

C are matrices for which all the operations below are valid, and that γ is a scalar. 

 Associativity: (AB)C = A(BC). 

 Associativity with scalar multiplication: γ(AB) = (γA)B, where γ is a scalar. 

 Distributivity with addition: A(B+C) = AB+AC and (A+B)C = AC+BC 

 Transpose of product:            

 (A + B)(C + D) = AC + AD + BC + BD 

 

Products of block matrices. Suppose A is a block matrix with m×p block 

entries     , and B is a block matrix with p×n block entries        , and for each k = 

1,2,…,p, the matrix product        makes sense, i.e., the number of columns of       

equals the number of rows of       . (In this case we say that the block matrices 

conform or are compatible.) Then C = AB can be expressed as the m × n block matrix 

with entries       .  For example, we have 

[
  
  

] [
  
  

]  [
          
          

] 

for any matrices A, B,C,D,E,F,G, H for which the matrix products above make sense. 

This formula is the same as the formula for multiplying two 2 × 2 matrices (i.e., with 

scalar entries); but when the entries of the matrix are themselves matrices (as in 

the block matrix above), we must be careful to preserve the multiplication order. 
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Uses	

The determinant will be an essential tool to identify the maximum and minimum points 
or the saddle points of a function with multiple variables.  

1‐ Reminder	‐	Definition	and	components	of	a	matrix		

A matrix is a rectangular table of form  

ܣ ൌ ൮

ܽଵଵ ܽଵଶ ⋯ ܽଵ௡
ܽଶଵ ܽଶଶ ⋯ ܽଶ௡
⋮ ⋮ ⋱ ⋮

ܽ௠ଵ ܽ௠ଶ ⋯ ܽ௠௡

൲ 

A matrix  is  said  to be  of dimension ݉ ൈ ݊ when  it  has ݉  rows  and ݊  columns.  This 
method of describing  the  size of a matrix  is necessary  in order  to avoid all  confusion 
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between two matrices containing the same amount of entries. For example, a matrix of 
dimension 3 ൈ 4 has 3  rows and 4 columns.  It would be distinct  from a matrix 4 ൈ 3, 
that has  4  rows  and  3  columns,  even  if  it  also has  12  entries. A matrix  is  said  to be 
square when it has the same number of rows and columns.  

The elements are matrix entries ܽ௜௝, that are  identified by their position. The element 

ܽଷଶ would be  the entry  located on  the  third  row and  the second column of matrix ܣ. 
This notation is essential in order to distinguish the elements of the matrix. The element 
ܽଶଷ, distinct from ܽଷଶ, is situated on the second row and the third column of the matrix 
  .ܣ

2‐ The	matrix	determinant		

A value called the determinant of ܣ, that we denote by  

 ,|ܣ| ሻ orܣሺݐ݁݀

corresponds  to  every  square  matrix   .ܣ We  will  avoid  the  formal  definition  of  the 
determinant  (that  implies  notions  of  permutations)  for  now  and we will  concentrate 
instead on its calculation.  

3‐ Calculation	of	the	determinant	for	a	૛ ൈ ૛	matrix		

Let us consider the matrix ܣ of dimension 2 ൈ 2	:  

ቀ
ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶ

ቁ 

The determinant of the matrix ܣ is defined by the relation  

detሺܣሻ ൌ ቚ
ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶ

ቚ ൌ 	ܽଵଵܽଶଶ	–	ܽଶଵܽଵଶ 

The  result  is  obtained  by  multiplying  opposite  elements  and  by  calculating  the 
difference between these two products…. a recipe that you will need to remember!  
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Example  

Given the matrix  

ܣ ൌ ቀ2 1
3 െ2

ቁ 

The determinant of A is  

detሺܣሻ ൌ ቚ2 1
3 െ2

ቚ 

4‐ Exercise		

Calculate the determinant of the following  2 ൈ 2 matrices :  

ܽ. ቀ1 3
5 െ2

ቁ 														ܾ. ቀ2 1
4 2

ቁ 

ܿ. ቀ 4 െ1
െ3 2

ቁ 														݀. ቀ4 െ3
1 2

ቁ 

Solutions :  a) ‐17  b) 0  c) 5  d) 11 

Before being able to evaluate the determinant of a 3 ൈ 3 matrix (or all other matrices of 
a greater dimension), you will first need to learn a few concepts… 

5‐ Definition	of	a	minor	

ܣ ൌ ൭
2 1 4
5 2 3
8 7 3

൱ 

The minor ܯଵଶ  is  the determinant of  the matrix obtained by eliminating  the  first  row 
and the second column of ܣ, i.e.  

ଵଶܯ ൌ ቚ5 3
8 3

ቚ ൌ 5.3 െ 3.8 ൌ 15 െ 24 ൌ െ9 

The minor ܯଶଶ is the determinant of the matrix obtained by eliminating the second row 
and the second column of ܣ, i.e.  

ଶଶܯ ൌ ቚ2 4
8 3

ቚ ൌ 2.3 െ 4.8 ൌ 6 െ 32 ൌ െ26 
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6‐ Definition	of	a	cofactor		

The cofactor, ܥ௜௝, of a matrix ܣ is defined by the relation  

௜௝ܥ ൌ ሺെ1ሻ௜ା௝ܯ௜௝ 

You will notice that the cofactor and the minor always have the same numerical value, 
with the possible exception of their sign.  

Let us again consider the matrix  

ܣ ൌ ൭
2 1 4
5 2 3
8 7 3

൱ 

We  have  already  shown  that  the minor ܯଵଶ ൌ െ9.  Thus  the  corresponding  cofactor, 
  ଵଶ, isܥ

ଵଶܥ ൌ ሺെ1ሻଵାଶܯଵଶ ൌ െ1. ሺെ9ሻ ൌ 9 

The minor ܯଵଶ and the cofactor ܥଵଶ are of different signs.  

The minor ܯଶଶ ൌ െ26. Its corresponding cofactor ܥଶଶ is  

Cଶଶ ൌ ሺെ1ሻଶାଶMଶଶ ൌ 1. ሺെ26ሻ ൌ െ26 

This time, the minor Mଶଶ and the cofactor Cଶଶ are identical.   

Evaluating  the  determinant  of  a  3 ൈ 3 matrix  is  now  possible. We  will  proceed  by 
reducing  it  in a series of 2 ൈ 2 determinants,  for which the calculation  is much easier. 
This process is called an cofactor expansion.  

7‐ Cofactor	expansion	–	a	method	to	calculate	the	determinant	

Given a square matrix ܣ and  its cofactors	ܥ௜௝. The determinant  is obtained by cofactor 

expansion as follows: 

 Choose a row or a column of ܣ	(if possible, it is faster to choose the row or column 
containing the most zeros)…  

 Multiply  each  of  the  elements  ܽ௜௝  of  the  row  (or  column)  chosen  by  its 

corresponding cofactor, ܥ௜௝…  
 Add these results.  
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8‐ Calculate	the	determinant	for	a	૜ ൈ ૜	matrix		

For a  	3 ൈ 3 matrix, this would mean that by choosing to make an expansion along the 
first row, the determinant would be  

ܣ	ݐ݁݀ ൌ ܽଵଵܥଵଵ ൅ ܽଵଶܥଵଶ ൅ ܽଵଷܥଵଷ 

If we had chosen to carry out an expansion along the second column, we would have to 
calculate  

ܣ	ݐ݁݀ ൌ ܽଵଶܥଵଶ ൅ ܽଶଶܥଶଶ ൅ ܽଷଶܥଷଶ 

While the choice of row or column may differ, the result of the determinant will be the 
same, no matter what the choice we have made. Let us verify this with an example.  

Example 

What is the determinant of matrix  ܣ?  

ܣ ൌ ൭
2 1 3
1 0 2
2 0 െ2

൱ 

Solution  

Let us follow the procedure proposed above (cofactor expansion):  

 Choose a row or a column of	ܣ… For now, let us choose the first row.  
 Multiply  each of  the  elements of  this  row by  their  corresponding  cofactors…  The 

elements of the first row are ܽଵଵ ൌ 2, ܽଵଶ ൌ 1, et	ܽଵଷ ൌ 3 that we multiply with the 
corresponding cofactors, i.e. Cଵଵ, Cଵଶ	et	Cଵଷ. These are  

ଵଵܥ ൌ ሺെ1ሻଵାଵܯଵଵ ൌ 1 ቚ0 2
0 െ2

ቚ ൌ 1ሺ0. ሺെ2ሻ െ 2.0ሻ ൌ 0 

ଵଶܥ ൌ ሺെ1ሻଵାଶܯଵଶ ൌ ሺെ1ሻ ቚ1 2
2 െ2

ቚ ൌ 1ሺ1 ൈ ሺെ2ሻ െ 2 ൈ 2ሻ ൌ 6 

Cଵଷ ൌ ሺെ1ሻଵାଷMଵଷ ൌ 1 ቚ1 0
2 0

ቚ ൌ 1ሺ1 ൈ ሺ0ሻ െ 2 ൈ 0ሻ ൌ 0 

Finally, we need to calculate  

ܣ	ݐ݁݀ ൌ ܽଵଶܥଵଶ ൅ ܽଶଶܥଶଶ ൅ ܽଷଶܥଷଶ 

ܣ	ݐ݁݀ ൌ 2 ൈ 0 ൅ 6 ൈ 1 ൅ 3 ൈ 0 ൌ 6 
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Let us verify if an expansion along the second column coincides with the previous result. 
Note  that  the  choice  of  the  second  column  is  much  more  effective  since  the 
determinant will be obtained from the calculation  

࡭	࢚ࢋࢊ ൌ ૚૛࡯૚૛ࢇ ൅ ૛૛࡯૛૛ࢇ ൅  ૜૛࡯૜૛ࢇ

Two  of  the  three  elements  of  the  second  column  are  zero.  In  effect,  ܽଵଶ ൌ 1, ܽଶଶ ൌ
0, ܽ݊݀	ܽଷଶ ൌ 0.  It  is  thus  useless  to  calculate  the  cofactors   ଶଶܥ and   .ଷଶܥ The 
corresponding cofactor for ܽଵଶ is  

Cଵଶ ൌ ሺെ1ሻଵାଶMଵଶ ൌ ሺെ1ሻ ቚ1 2
2 െ2

ቚ ൌ 1ሺ1 ൈ ሺെ2ሻ െ 2 ൈ 2ሻ ൌ 6 

The determinant of  ܣ is thus  

det	A ൌ aଵଶCଵଶ ൅ aଶଶCଶଶ ൅ aଷଶCଷଶ ൌ 1 ൈ 6 ൅ 0 ൈ Cଶଶ ൅ 0 ൈ Cଷଶ ൌ 6, 

which corresponds to the answer obtained by an expansion along the first row. 

9‐ Alternative	method	to	calculate	determinants	

This second method is in all points equivalent to cofactor expansion but will allow you to 
avoid the use of cofactors.  

 Allocate a sign ൅/െ to each element by following the rule: we associate a positive 
sign  to  the  position  ܽଵଵ  ,  then we  alternate  the  signs  by moving  horizontally  or 
vertically.  

 Choose a row or column of ܣ (if possible, it is faster to choose the row or column of 
  …(containing the most number of zeros ܣ

 Multiply each element of ܽ௜௝ of  the  row  (or  column)  chosen by  its  corresponding 

minor,  i.e.  the  remaining determinant when we eliminate  the  row  and  column  in 
which ܽ௜௝ is.  

 Add or subtract these results according to the sign allocated to the elements during 
the first step.  

Let us verify that this method will produce the same result as in the previous example:  
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Example  

Given the matrix ܣ to which we allocate a sign ൅/െ according to the rule stated above.  

ܣ ൌ ൭
2ା 1ି 3ା

1ି 0ା 2ି

2ା 0ି െ2ା
൱ 

 

 

 Let us choose the third column (it  is certainly not the best choice since the second 
row has the most zeros, but…)  

 We then multiply each element by its corresponding minor:  

3 ቚ1 0
2 0

ቚ ൌ 3 ൈ 0 ൌ 0 

2 ቚ2 1
2 2

ቚ ൌ 2 ൈ ሺെ2ሻ ൌ െ4 

െ2 ቚ2 1
1 0

ቚ ൌ െ2 ൈ ሺെ1ሻ ൌ 2 

 Finally,  the  respective  signs  of  the  elements  of  the  third  column  tell  us  the 
operations to carry out between these values to obtain the determinant:  

det ܣ ൌ 	൅	0	 െ	ሺെ4ሻ 	൅ 	2	 ൌ 	6	

10‐ Exercise		

Calculate the determinant of the following matrices: 

ܽሻ ൭
1 3 2
4 1 3
2 2 0

൱ 																			ܾሻ ൭
1 0 2
1 3 4
0 6 0

൱		 

ܿሻ ൭
3 െ2 4
2 െ4 5
1 8 2

൱ 																			݀ሻ ൭
8 െ1 9
3 1 8
11 0 17

൱ 

Solutions :  a) 24  b) ‐12  c) ‐66  d) 0 
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11‐ Determinants	of	square	matrices	of		dimensions	4x4	and	
greater	

The methods  presented  for  the  case  of  3 ൈ 3 matrices  remain  valid  for  all  greater 
dimensions. You must again follow the steps for cofactor expansion: 

Given a square matrix ܣ and its cofactors	ܥ௜௝, the determinant is obtained by following a 

cofactor expansion as follows: 

 Chose a row or column of ܣ (if possible, it is faster to choose the row or column that 
contains the most zeros) …  

 Multiply  each  of  the  elements	ܽ௜௝  of  the  row  (or  column)  chosen,  by  the 

corresponding cofactor ܥ௜௝…  
 Add the results.  

   

We must however mention a distinction. The cofactor associated to the element ܽ௜௝ of a 
4 ൈ 4 matrix is the determinant of a 3 ൈ 3 matrix, since it is obtained by eliminating the 
ith row and the jth column of ܣ.  

Example  

Calculate the determinant of matrix A 

ܣ ൌ ൮

1 2 1 0
0 3 1 1
െ1 0 3 1
3 1 2 0

൲ 

It  is essential, to reduce the amount of calculations, to choose the row or column that 
contains  the  most  zeros  (here,  the  fourth  column).  We  will  proceed  to  a  cofactor 
expansion along the fourth column, which means that  

ܣ	ݐ݁݀ ൌ ܽଵସܥଵସ ൅ ܽଶସܥଶସ ൅ ܽଷସܥଷସ ൅ ܽସସܥସସ 

As ܽଵସ and ܽସସ are zero, it is useless to find  ܥଵସ and ܥସସ. The cofactors ܥଶସ and ܥଷସ will 
be necessary…  

ଶସܥ ൌ ሺെ1ሻଶାସܯଶସ ൌ 1 อ
1 2 1
െ1 0 3
3 1 2

อ  
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ଷସܥ ൌ ሺെ1ሻଷାସܯଷସ ൌ െ1 อ
1 2 1
0 3 1
3 1 2

อ 

We  let the reader verify that ܥଶସ ൌ 18 et ܥଷସ ൌ െ2. Consequently, the determinant of 
  is ܣ

ܣ	ݐ݁݀ ൌ ܽଵସܥଵସ ൅ ܽଶସܥଶସ ൅ ܽଷସܥଷସ ൅ ܽସସܥସସ 

ܣ	ݐ݁݀ ൌ 0 ൈ ଵସܥ ൅ 1 ൈ 18 ൅ 1 ൈ ሺെ2ሻ ൅ 0 ൈ ସସܥ ൌ 16 

 

Exercise  

Show that the determinant of A  in the previous example  is 16 by a cofactor expansion 
along  

a) The first row  
b) The third column 
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✌5.5

The inverse of a matrix
Introduction
In this leaflet we explain what is meant by an inverse matrix and how it is calculated.

1. The inverse of a matrix
The inverse of a square n× n matrix A, is another n× n matrix denoted by A−1 such that

AA−1 = A−1A = I

where I is the n × n identity matrix. That is, multiplying a matrix by its inverse produces
an identity matrix. Not all square matrices have an inverse matrix. If the determinant of the
matrix is zero, then it will not have an inverse, and the matrix is said to be singular. Only
non-singular matrices have inverses.

2. A formula for finding the inverse
Given any non-singular matrix A, its inverse can be found from the formula

A−1 =
adj A

|A|
where adjA is the adjoint matrix and |A| is the determinant of A. The procedure for finding
the adjoint matrix is given below.

3. Finding the adjoint matrix
The adjoint of a matrix A is found in stages:

(1) Find the transpose of A, which is denoted by AT . The transpose is found by interchanging
the rows and columns of A. So, for example, the first column of A is the first row of the
transposed matrix; the second column of A is the second row of the transposed matrix, and so
on.

(2) The minor of any element is found by covering up the elements in its row and column and
finding the determinant of the remaining matrix. By replacing each element of AT by its minor,
we can write down a matrix of minors of AT .

(3) The cofactor of any element is found by taking its minor and imposing a place sign
according to the following rule 


+ − + . . .
− + − . . .
+ − + . . .

. . . . . . . . .
. . .



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This means, for example, that to find the cofactor of an element in the first row, second column,
the sign of the minor is changed. On the other hand to find the cofactor of an element in the
second row, second column, the sign of the minor is unaltered. This is equivalent to multiplying
the minor by ‘+1’ or ‘−1’ depending upon its position. In this way we can form a matrix of
cofactors of AT . This matrix is called the adjoint of A, denoted adjA.

The matrix of cofactors of the transpose of A, is called the adjoint matrix, adjA

This procedure may seem rather cumbersome, so it is illustrated now by means of an example.

Example

Find the adjoint, and hence the inverse, of A =


 1 −2 0

3 1 5
−1 2 3


.

Solution
Follow the stages outlined above. First find the transpose of A by taking the first column of A
to be the first row of AT , and so on:

AT =


 1 3 −1
−2 1 2
0 5 3




Now find the minor of each element in AT . The minor of the element ‘1’ in the first row, first

column, is obtained by covering up the elements in its row and column to give

(
1 2
5 3

)
and

finding the determinant of this, which is −7. The minor of the element ‘3’ in the second column

of the first row is found by covering up elements in its row and column to give

(
−2 2
0 3

)
which

has determinant −6. We continue in this fashion and form a new matrix by replacing every
element of AT by its minor. Check for yourself that this process gives

matrix of minors of AT =


 −7 −6 −10

14 3 5
7 0 7




Then impose the place sign. This results in the matrix of cofactors, that is, the adjoint of A.

adj A =


 −7 6 −10
−14 3 −5
7 0 7




Notice that to complete this last stage, each element in the matrix of minors has been multiplied
by 1 or −1 according to its position.

It is a straightforward matter to show that the determinant of A is 21. Finally

A−1 =
adj A

|A| =
1

21


 −7 6 −10
−14 3 −5
7 0 7




Exercise

1. Show that the inverse of


 1 3 2

0 5 1
−1 3 0


 is 1

4


 −3 6 −7
−1 2 −1
5 −6 5


.

5.5.2 copyright c© Pearson Education Limited, 2000



Linear Algebra                        lecture 5                        
 

Elementary Row Operations 

In matrices we are allowed to perform operations of the following types: 

1. Interchange two rows in the matrix ( ex.      ). 

2. Multiply a row by a non-zero constant ( ex.       , where   is constant). 

3. Add a multiple of one row to another row (ex. 

                              ). 

The above three operations are called elementary raw operation (ERO's) on a matrix. 

Note that we can perform these operations on columns of the matrices and in this case 

they called elementary column operations on a matrix. 

Example: 

The following table describes how an ERO is performed at each step to produce a 

new simpler matrix 

  [
     
     
     

] 

             [
     
     
     

]                   

                     

 



Using row reduction to calculate the inverse and the
determinant of a square matrix

Hayder Kadhim  Zghair

1 Inverse of a square matrix

An n× n square matrix A is called invertible if there exists a matrix X such that

AX = XA = I,

where I is the n × n identity matrix. If such matrix X exists, one can show that it is unique.
We call it the inverse of A and denote it by A−1 = X, so that

AA−1 = A−1A = I

holds if A−1 exists, i.e. if A is invertible. Not all matrices are invertible. If A−1 does not exist,
the matrix A is called singular or noninvertible.

Note that if A is invertible, then the linear algebraic system

Ax = b

has a unique solution x = A−1b. Indeed, multiplying both sides of Ax = b on the left by A−1,
we obtain

A−1Ax = A−1b.

But A−1A = I and Ix = x, so
x = A−1b

The converse is also true, so for a square matrix A,

Ax = b has a unique solution if and only if A is invertible.

2 Calculating the inverse

To compute A−1 if it exists, we need to find a matrix X such that

AX = I (1)

Linear algebra tells us that if such X exists, then XA = I holds as well, and so X = A−1.

1



Now observe that solving (1) is equivalent to solving the following linear systems:

Ax1 = e1

Ax2 = e2

. . .

Axn = en,

where xj, j = 1, . . . , n, is the (unknown) jth column of X and ej is the jth column of the
identity matrix I. If there is a unique solution for each xj, we can obtain it by using elementary
row operations to reduce the augmented matrix [ A | ej ] as follows:

[ A | ej ] −→ [ I | xj ].

Instead of doing this for each j, we can row reduce all these systems simultaneously, by attaching
all columns of I (i.e. the whole matrix I) on the right of A in the augmented matrix and
obtaining all columns of X (i.e. the whole inverse matrix) on the right of the identity matrix
in the row-equivalent matrix:

[ A | I ] −→ [ I | X ].

If this procedure works out, i.e. if we are able to convert A to identity using row operations,
then A is invertible and A−1 = X. If we cannot obtain the identity matrix on the left, i.e. we
get a row of zeroes, then A−1 does not exist and A is singular.

Example 1. Find the inverse of

A =

 1 2 3
2 4 5
3 5 6


or show that it does not exist.

Solution:

form the augmented matrix [ A | I ]:

 1 2 3
2 4 5
3 5 6

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


R3 − 3R1 −→ R3 :

 1 2 3
2 4 5
0 −1 −3

∣∣∣∣∣∣
1 0 0
0 1 0

−3 0 1


R2 − 2R1 −→ R2 :

 1 2 3
0 0 −1
0 −1 −3

∣∣∣∣∣∣
1 0 0

−2 1 0
−3 0 1


interchange R2 and R3 :

 1 2 3
0 −1 −3
0 0 −1

∣∣∣∣∣∣
1 0 0

−3 0 1
−2 1 0


2



R2 · (−1), R3 · (−1) :

 1 2 3
0 1 3
0 0 1

∣∣∣∣∣∣
1 0 0
3 0 −1
2 −1 0


R2 − 3R3 −→ R2 :

 1 2 3
0 1 0
0 0 1

∣∣∣∣∣∣
1 0 0

−3 3 −1
2 −1 0


R1 − 2R2 −→ R1 :

 1 0 3
0 1 0
0 0 1

∣∣∣∣∣∣
7 −6 2

−3 3 −1
2 −1 0


R1 − 3R3 −→ R1 :

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
1 −3 2

−3 3 −1
2 −1 0


So

A−1 =

 1 −3 2
−3 3 −1

2 −1 0


Example 2. Find the inverse of

A =

 1 2 1
−2 1 8

1 −2 −7


or show that it does not exist.

Solution:

form the augmented matrix [ A | I ]:

 1 2 1
−2 1 8

1 −2 −7

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1



R3 −R1 −→ R3 :

 1 2 1
−2 1 8

0 −4 −8

∣∣∣∣∣∣
1 0 0
0 1 0

−1 0 1


R2 + 2R1 −→ R2 :

 1 2 1
0 5 10
0 −4 −8

∣∣∣∣∣∣
1 0 0
2 1 0

−1 0 1


R2/5, R3/(−4) :

 1 2 1
0 1 2
0 1 2

∣∣∣∣∣∣
1 0 0

2/5 1/5 0
1/4 0 −1/4


3



R3 −R2 −→ R3 :

 1 2 1
0 1 2
0 0 0

∣∣∣∣∣∣
1 0 0

2/5 1/5 0
−3/20 −1/5 −1/4


The row of zeroes on the left means we cannot get the identity matrix there, and thus A is

singular (no inverse exists).
Applying this procedure to an arbitrary 2× 2 matrix

A =

[
a b
c d

]
,

we obtain (check!)

A−1 =
1

detA

[
d −b

−c a

]
,

where
detA = ad− bc,

provided that detA 6= 0. Otherwise, the inverse does not exist. In general, it is true that

A is invertible if and only if detA 6= 0.

You can check that in the Example 2 above detA = 0.

3 Calculating determinants using row reduction

We can also use row reduction to compute large determinants. The idea is to use elementary
row operations to reduce the matrix to an upper (or lower) triangular matrix, using the fact that

Determinant of an upper (lower) triangular or diagonal matrix equals the product of its
diagonal entries.

As we row reduce, we need to keep in mind the following properties of the determinants:

1. detA =detAT, so we can apply either row or column operations to get the determinant.

2. If two rows or two columns of A are identical or if A has a row or a column of zeroes,
then detA = 0.

3. If the matrix B is obtained by multiplying a single row or a single column of A by a
number α, then

detB = αdetA.

If all n rows (or all columns) of A are multiplied by α to obtain B, then

detB = αndetA.

4



4. If B is obtained by interchanging two rows of A, then

detB = −detA.

5. If B is obtained by adding a multiple of one row (or column) of A to another, then

detB = detA.

Example: use row reduction to compute the determinant of

A =


2 3 3 1
0 4 3 −3
2 −1 −1 −3
0 −4 −3 2

 =

Solution:

Interchange R2 and R3: detA = −

∣∣∣∣∣∣∣∣
2 3 3 1
2 −1 −1 −3
0 4 3 −3
0 −4 −3 2

∣∣∣∣∣∣∣∣ =

(note that the determinant changes sign, by property 4 above)

R2 −R1 −→ R2 = −

∣∣∣∣∣∣∣∣
2 3 3 1
0 −4 −4 −4
0 4 3 −3
0 −4 −3 2

∣∣∣∣∣∣∣∣ =

(determinant does not change)

R4 + R3 −→ R4 = −

∣∣∣∣∣∣∣∣
2 3 3 1
0 −4 −4 −4
0 4 3 −3
0 0 0 −1

∣∣∣∣∣∣∣∣ =

(determinant does not change)

R3 + R2 −→ R3 = −

∣∣∣∣∣∣∣∣
2 3 3 1
0 −4 −4 −4
0 0 −1 −7
0 0 0 −1

∣∣∣∣∣∣∣∣ =

(determinant does not change, and we get an upper triangular matrix)

Compute the determinant of the upper triangular matrix: = −2 · (−4) · (−1) · (−1) = 8

5



4 Homework problems

1. For each of the following matrices, find the inverse or show that it does not exist. In the
latter case, check by calculating the determinant.

a)

 1 1 −1
2 −1 1
1 1 2

 b)

 2 1 0
0 2 1
0 0 2


c)

 1 −1 −1
2 1 0
3 −2 1

 d)

 2 3 1
−1 2 1

4 −1 −1



2. Use the method of row reduction to evaluate the following determinants:

a)

∣∣∣∣∣∣∣∣
1 4 4 1
0 1 −2 2
3 3 1 4
0 1 −3 −2

∣∣∣∣∣∣∣∣ b)

∣∣∣∣∣∣∣∣
1 0 0 3
0 1 −2 0

−2 3 −2 3
0 −3 3 3

∣∣∣∣∣∣∣∣

6
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System of Linear Equations 

A linear equation in variables            is an equation of the form 

                   

where            and b are constant real or complex numbers. The constant    is 

called the coefficient of    ; and b is called the constant term of the equation. 

A system of linear equations (or linear system) is a finite collection of linear equations 

in samevariables. For instance, a linear system of m equations in n variables 

            can be written as 

                        

                       

   
                       

                 

A solution of a linear system (*) is a tuple (         ) of numbers that makes each 

equation a true statement when the values          are substituted for           , 

respectively. The set of all solutions of a linear system is called the solution set of the 

system. 

Theorem 1.1. Any system of linear equations has one of the following exclusive 

conclusions. 

(a) No solution. 

(b) Unique solution. 

(c) Infinitely many solutions. 

 

A linear system is said to be consistent if it has at least one solution; and is said to be 

inconsistent if it has no solution. 

We can represent the general system (*) by using matrices as      where A is 

called the coefficients matrix, X is called the variables vector and B is called the 

constant vector. Therefore the general system (*) can be rewrite as follows 
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[

           

         

   
           

] [

  

  

 
  

]  [

  

  

 
  

]    

 

 =[

           

         

   
           

]    [

  

  

 
  

]        [

  

  

 
  

] 

 

The augmented matrix of the general linear system (*) is the matrix 

[   ]  [

                

                 

    
                 

]  

System of linear equations and matrices 

It is impractical to solve more complicated linear systems by hand. Computers and 

calculators now have built in routines to solve larger and more complex systems. 

Matrices, in conjunction with graphing utilities and or computers are used for solving 

more complex systems. In this section, we will develop certain matrix methods for 

solving systems of linear equations. 

There are many different methods to solve system of linear equations using matrices, 

in this section we will discuss some of these methods. 

1) Cramer's Rule 

This method used to solve square systems (number of equations equals the 

number of variables) AX=B and depends on the determinants.  

 If det(A)=0, then the system has no solution. 

 If           then the system has a unique solution. 

We will explain the method by the following examples 
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2) Elementary raw operations  

In this method we will used the elementary raw operations to change the 

augmented matrix [   ] to [   ]. The following example explains this 

method. 

 

Ex: Solve the following system of linear equation using the elementary row 

operations. 

 

        
            
          

 

Solution:  

 

 

[   ]    

 

 

 

 

 

 

 

 

 

                                                         Then the solution is [
   
   
    

]  

Homework: Solve the following systems of linear equation using the elementary row 

operations.  

         
          
        

 

 

 

12215

15432

4111







𝑅 →   𝑟  𝑟  

12215

7210

4111







𝑅3 →   𝑟  𝑟3 

32760

7210

4111







𝑅 →  𝑟  

32760

7210

4111







𝑅3 →  6𝑟  𝑟3 

10500

7210

4111







𝑅3 →
 

5
𝑟3 

2100

7210

4111







𝑅 → 𝑟  𝑟  

2100

7210

3101







𝑅 → 𝑟3  𝑟  

2100

7210

1001





𝑅 →  𝑟3  𝑟  

2100

3010

1001



𝑥   𝑦  𝑧    

 𝑥  𝑦   𝑧  6 
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Gaussian Elimination
�
�

�
�30.2

Introduction
In this Section we will reconsider the Gaussian elimination approach discussed in 8, and we
will see how rounding error can grow if we are not careful in our implementation of the approach. A
method called partial pivoting, which helps stop rounding error from growing, will be introduced.

'

&

$

%
Prerequisites

Before starting this Section you should . . .

• revise matrices, especially matrix solution of
equations

• recall Gaussian elimination

• be able to find the inverse of a 2× 2 matrix�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• carry out Gaussian elimination with
partial pivoting

12 HELM (2008):
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1. Gaussian elimination
Recall from 8 that the basic idea with Gaussian (or Gauss) elimination is to replace the matrix of
coefficients with a matrix that is easier to deal with. Usually the nicer matrix is of upper triangular
form which allows us to find the solution by back substitution. For example, suppose we have

x1 + 3x2 − 5x3 = 2

3x1 + 11x2 − 9x3 = 4

−x1 + x2 + 6x3 = 5

which we can abbreviate using an augmented matrix to 1 3 −5 2
3 11 −9 4

−1 1 6 5

 .

We use the boxed element to eliminate any non-zeros below it. This involves the following row
operations 1 3 −5 2

3 11 −9 4
−1 1 6 5

 R2− 3×R1
R3 + R1

⇒

 1 3 −5 2
0 2 6 −2
0 4 1 7

 .

And the next step is to use the 2 to eliminate the non-zero below it. This requires the final row
operation 1 3 −5 2

0 2 6 −2
0 4 1 7


R3− 2×R2

⇒

 1 3 −5 2

0 2 6 −2
0 0 −11 11

 .

This is the augmented form for an upper triangular system, writing the system in extended form we
have

x1 + 3x2 − 5x3 = 2

2x2 + 6x3 = −2

−11x3 = 11

which is easy to solve from the bottom up, by back substitution.

HELM (2008):
Section 30.2: Gaussian Elimination
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Example 5
Solve the system

x1 + 3x2 − 5x3 = 2

2x2 + 6x3 = −2

−11x3 = 11

Solution

The bottom equation implies that x3 = −1. The middle equation then gives us that

2x2 = −2− 6x3 = −2 + 6 = 4 ∴ x2 = 2

and finally, from the top equation,

x1 = 2− 3x2 + 5x3 = 2− 6− 5 = −9.

Therefore the solution to the problem stated at the beginning of this Section is x1

x2

x3

 =

 −9
2
−1

 .

The following Task will act as useful revision of the Gaussian elimination procedure.

Task

Carry out row operations to reduce the matrix 2 −1 4
4 3 −1

−6 8 −2


into upper triangular form.

Your solution

14 HELM (2008):
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Answer
The row operations required to eliminate the non-zeros below the diagonal in the first column are
as follows 2 −1 4

4 3 −1
−6 8 −2

 R2− 2×R1
R3 + 3×R1

⇒

 2 −1 4
0 5 −9
0 5 10


Next we use the 5 on the diagonal to eliminate the 5 below it: 2 −1 4

0 5 −9
0 5 10


R3−R2

⇒

 2 −1 4
0 5 −9
0 0 19


which is in the required upper triangular form.

2. Partial pivoting
Partial pivoting is a refinement of the Gaussian elimination procedure which helps to prevent the
growth of rounding error.

An example to motivate the idea
Consider the example[

10−4 1
−1 2

] [
x1

x2

]
=

[
1
1

]
.

First of all let us work out the exact answer to this problem[
x1

x2

]
=

[
10−4 1
−1 2

]−1 [
1
1

]
=

1

2× 10−4 + 1

[
2 −1
1 10−4

] [
1
1

]
=

1

2× 10−4 + 1

[
1

1 + 10−4

]
=

[
0.999800...
0.999900...

]
.

Now we compare this exact result with the output from Gaussian elimination. Let us suppose, for
sake of argument, that all numbers are rounded to 3 significant figures. Eliminating the one non-zero
element below the diagonal, and remembering that we are only dealing with 3 significant figures, we
obtain[

10−4 1
0 104

] [
x1

x2

]
=

[
1

104

]
.

The bottom equation gives x2 = 1, and the top equation therefore gives x1 = 0. Something has
gone seriously wrong, for this value for x1 is nowhere near the true value 0.9998. . . found without
rounding.The problem has been caused by using a small number (10−4) to eliminate a number much
larger in magnitude (−1) below it.

The general idea with partial pivoting is to try to avoid using a small number to eliminate much
larger numbers.

HELM (2008):
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Suppose we swap the rows[
−1 2

10−4 1

] [
x1

x2

]
=

[
1
1

]
and proceed as normal, still using just 3 significant figures. This time eliminating the non-zero below
the diagonal gives[

−1 2
0 1

] [
x1

x2

]
=

[
1
1

]
which leads to x2 = 1 and x1 = 1, which is an excellent approximation to the exact values, given
that we are only using 3 significant figures.

Partial pivoting in general
At each step the aim in Gaussian elimination is to use an element on the diagonal to eliminate all
the non-zeros below. In partial pivoting we look at all of these elements (the diagonal and the ones
below) and swap the rows (if necessary) so that the element on the diagonal is not very much smaller
than the other elements.

Key Point 3

Partial Pivoting

This involves scanning a column from the diagonal down. If the diagonal entry is very much smaller
than any of the others we swap rows. Then we proceed with Gaussian elimination in the usual way.

In practice on a computer we swap rows to ensure that the diagonal entry is always the largest
possible (in magnitude). For calculations we can carry out by hand it is usually only necessary to
worry about partial pivoting if a zero crops up in a place which stops Gaussian elimination working.
Consider this example

1 −3 2 1
2 −6 1 4

−1 2 3 4
0 −1 1 1




x1

x2

x3

x4

 =


−4
1
12
0

 .

The first step is to use the 1 in the top left corner to eliminate all the non-zeros below it in the
augmented matrix

1 −3 2 1 −4
2 −6 1 4 1

−1 2 3 4 12
0 −1 1 1 0

 R2− 2×R1
R3 + R1

⇒


1 −3 2 1 −4

0 0 −3 2 9

0 −1 5 5 8
0 −1 1 1 0

 .

What we would like to do now is to use the boxed element to eliminate all the non-zeros below it.
But clearly this is impossible. We need to apply partial pivoting. We look down the column starting

16 HELM (2008):
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at the diagonal entry and see that the two possible candidates for the swap are both equal to −1.
Either will do so let us swap the second and fourth rows to give

1 −3 2 1 −4

0 −1 1 1 0

0 −1 5 5 8
0 0 −3 2 9

 .

That was the partial pivoting step. Now we proceed with Gaussian elimination
1 −3 2 1 −4

0 −1 1 1 0

0 −1 5 5 8
0 0 −3 2 9


R3−R2

⇒


1 −3 2 1 −4
0 −1 1 1 0
0 0 4 4 8
0 0 −3 2 9

 .

The arithmetic is simpler if we cancel a factor of 4 out of the third row to give
1 −3 2 1 −4
0 −1 1 1 0
0 0 1 1 2
0 0 −3 2 9

 .

And the elimination phase is completed by removing the −3 from the final row as follows
1 −3 2 1 −4
0 −1 1 1 0

0 0 1 1 2

0 0 −3 2 9


R4 + 3×R3

⇒


1 −3 2 1 −4
0 −1 1 1 0
0 0 1 1 2
0 0 0 5 15

 .

This system is upper triangular so back substitution can be used now to work out that x4 = 3,
x3 = −1, x2 = 2 and x1 = 1.

The Task below is a case in which partial pivoting is required.

[For a large system which can be solved by Gauss elimination see Engineering Example 1 on page
62].

Task

Transform the matrix 1 −2 4
−3 6 −11

4 3 5


into upper triangular form using Gaussian elimination (with partial pivoting when
necessary).

HELM (2008):
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Your solution

Answer
The row operations required to eliminate the non-zeros below the diagonal in the first column are 1 −2 4

−3 6 −11
4 3 5

 R2 + 3×R1
R3− 4×R1

⇒

 1 −2 4
0 0 1
0 11 −11


which puts a zero on the diagonal. We are forced to use partial pivoting and swapping the second
and third rows gives 1 −2 4

0 11 −11
0 0 1


which is in the required upper triangular form.

Key Point 4

When To Use Partial Pivoting

1. When carrying out Gaussian elimination on a computer, we would usually always swap rows
so that the element on the diagonal is as large (in magnitude) as possible. This helps stop
the growth of rounding error.

2. When doing hand calculations (not involving rounding) there are two reasons we might pivot

(a) If the element on the diagonal is zero, we have to swap rows so as to put a non-zero on
the diagonal.

(b) Sometimes we might swap rows so that there is a “nicer” non-zero number on the
diagonal than there would be without pivoting. For example, if the number on the
diagonal can be arranged to be a 1 then no awkward fractions will be introduced when
we carry out row operations related to Gaussian elimination.

18 HELM (2008):
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Exercises

1. Solve the following system by back substitution

x1 + 2x2 − x3 = 3

5x2 + 6x3 = −2

7x3 = −14

2. (a) Show that the exact solution of the system of equations[
10−5 1
−2 4

] [
x1

x2

]
=

[
2
10

]
is

[
x1

x2

]
=

[
−0.99998
2.00001

]
.

(b) Working to 3 significant figures, and using Gaussian elimination without pivoting, find an

approximation to

[
x1

x2

]
. Show that the rounding error causes the approximation to x1 to be

a very poor one.

(c) Working to 3 significant figures, and using Gaussian elimination with pivoting, find an

approximation to

[
x1

x2

]
. Show that the approximation this time is a good one.

3. Carry out row operations (with partial pivoting if necessary) to reduce these matrices to upper
triangular form.

(a)

 1 −2 4
−4 −3 −3
−1 13 1

 , (b)

 0 −1 2
1 −4 2

−2 5 −4

 , (c)

 −3 10 1
1 −3 2

−2 10 −4

 .

(Hint: before tackling (c) you might like to consider point 2(b) in Key Point 4.)

Answers

1. From the last equation we see that x3 = −2. Using this information in the second equation
gives us x2 = 2. Finally, the first equation implies that x1 = −3.

2. (a) The formula

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
can be used to show that

x1 = −50000

50001
= −0.99998 and x2 =

200005

100002
= 2.00001 as required.

(b) Carrying out the elimination without pivoting, and rounding to 3 significant figures we
find that x2 = 2.00 and that, therefore, x1 = 0. This is a very poor approximation to x1.

(c) To apply partial pivoting we swap the two rows and then eliminate the bottom left element.
Consequently we find that, after rounding the system of equations to 3 significant figures,
x2 = 2.00 and x1 = −1.00. These give excellent agreement with the exact answers.

HELM (2008):
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Answers

3.

(a) The row operations required to eliminate the non-zeros below the diagonal in the first
column are as follows 1 −2 4

−4 −3 −3
−1 13 1

 R2 + 4×R1
R3 + 1×R1

⇒

 1 −2 4
0 −11 13
0 11 5


Next we use the element in the middle of the matrix to eliminate the value underneath
it. This gives 1 −2 4

0 −11 13
0 0 18

 which is of the required upper triangular form.

(b) We must swap the rows to put a non-zero in the top left position (this is the partial
pivoting step). Swapping the first and second rows gives the matrix 1 −4 2

0 −1 2
−2 5 −4

 .

We carry out one row operation to eliminate the non-zero in the bottom left entry as
follows 1 −4 2

0 −1 2
−2 5 −4


R3 + 2×R1

⇒

 1 −4 2
0 −1 2
0 −3 0


Next we use the middle element to eliminate the non-zero value underneath it. This
gives 1 −4 2

0 −1 2
0 0 −6

 which is of the required upper triangular form.

(c) If we swap the first and second rows of the matrix then we do not have to deal with
fractions. Having done this the row operations required to eliminate the non-zeros below
the diagonal in the first column are as follows 1 −3 2

−3 10 1
−2 10 −4

 R2 + 3×R1
R3 + 2×R1

⇒

 1 −3 2
0 1 7
0 4 0


Next we use the element in the middle of the matrix to eliminate the non-zero value
underneath it. This gives 1 −3 2

0 1 7
0 0 −28

 which is of the required upper triangular form.
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1

Gauss-Jordan Matrix Elimination 
 

-This method can be used to solve systems of linear equations involving two or    
  more variables. However, the system must be changed to an augmented matrix.  
 
-This method can also be used to find the inverse of a 2x2 matrix or larger matrices, 3x3,  
 4x4 etc.  

Note: The matrix must be a square matrix in order to find its inverse. 
 
 
An Augmented Matrix is used to solve a system of linear equations. 
 

     1111 dzcybxa =++      
 System of Equations ⎯→⎯  2222 dzcybxa =++      
     3333 dzcybxa =++  
  

 Augmented Matrix ⎯→⎯  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

333

222

111

d
d
d

cba
cba
cba

   

 
 
 -When given a system of equations, to write in augmented matrix form, the 
coefficients of each variable must be taken and put in a matrix. 
 
 
For example, for the following system:  
    

     
332

42
323

=−+
=+−
=−+

zyx
zyx
zyx

 

  

 Augmented Matrix ⎯→⎯  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

3
4
3

132
211
123
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-There are three different operations known as Elementary Row Operations used when   
 solving or reducing a matrix, using Gauss-Jordan elimination method. 
 
 1. Interchanging two rows. 
 2. Add one row to another row, or multiply one row first and then adding it   
     to another. 
 3. Multiplying a row by any constant greater than zero. 
 
Identity Matrix-is the final result obtained when a matrix is reduced. This matrix  
     consists of ones in the diagonal starting with the first number.  
    
  -The numbers in the last column are the answers to the system   
    of equations. 
 

    
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

5
2
3

100
010
001

⎯⎯← Identity Matrix for a 3x3 

 

    

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

4
1
6
2

1000
0100
0010
0001

⎯⎯← Identity Matrix for a 4x4 

 
  -The pattern continues for bigger matrices. 
 
Solving a system using Gauss-Jordan  
 
 –The best way to go is to get the ones first in their respective column, and then  
 using that one to get the zeros in that  column. 
 
 -It is very important to understand that there is no exact procedure to follow when 
   using the Gauss-Jordan method to solve for a system. 
  

 
332

42
323

=−+
=+−
=−+

zyx
zyx
zyx

  Write as an augmented matrix. 

  ↓  

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

3
4
3

132
211
123

    Switch row 1 with row 2 to get a 1 in the first column 

   
  ↓  
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

3
3
4

132
123

211
 Multiply row 1 by -3 and add to row 2 to get a zero 

 
Row 1 multiplied by -3 ⎯→⎯   3−  3  6−  12−   
Row 2 ⎯→⎯    +    3 2   -1      3  
New Row 2 ⎯→⎯       0 5   -7     -9 
 
-Put the new row 2 in the matrix, note that though row 1 was multiplied by -3,    
 row 1 didn’t change in our matrix. 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
−

−

3
9

4

132
750

211
  

 
Using a similar procedure of multiplying and adding rows, obtain the following matrix 

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−

3132
9750

4211
  Multiply row 1 by -2 and add to row3 as above.  

   ↓  

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

5
9

4

550
750

211
 Switch rows 2 and 3 to obtain the following 

   ↓  

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

9
5

4

750
550

211
 Divide the second row by 5 to obtain a 1 in the second row.  

   ↓  

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

9
1

4

750
110

211
 Add row 2 to row 1 

   ↓  

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
−

9
1

3

750
110

101
 Multiply and add like we did earlier, -5∗R2+R3 

   ↓  



The Math Center        ■         Valle Verde        ■         Tutorial Support Services        ■         EPCC 
 

4

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
−

4
1

3

200
110

101
 Divide row 3 by -2 to obtain a 1 in the third row. 

   ↓  

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−
2
1

3

100
110

101
  

 
-Finally, the matrix can be solved in two different ways: 
A. Using the 1 in column 3, obtain the other zeros and the solutions.  
   

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2
1
1

100
010
001

 211 === zyx  

 
B. Solve by using back substitution. 
 
-The solution to the last row is 2=z , the answer can be substituted into the equation 
produced by the second row.  1−=− zy   Substituting into this equation, it 
simplifies to: 

    
1

12
=

−=−
y
y

   

 
-Again, substituting the answer for z into the first equation will give the answer for x. 

    
1

32
3

=
=+
=+

x
x

zx
 

 
 
 
 
 
 
 
 
 



 

Vector Spaces 

4.1  Vectors in R
n 

4.2  Vector Spaces 

4.3  Subspaces of Vector Spaces 

4.4  Spanning Sets and Linear Independence 

4.5  Basis and Dimension 

4.6  Rank of a Matrix and Systems of Linear Equations 

4.7  Coordinates and Change of Basis 

4.8  Applications of Vector Spaces 
4.1 
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4.1  Vectors in R
n 

a sequence of n real numbers  1 2( , , , )nx x x

 An ordered n-tuple : 

the set of all ordered n-tuples 

 R
n
-space :

 

n = 4 R
4
-space = set of all ordered quadruple of real numbers ),,,( 4321 xxxx

R
1
-space = set of all real numbers n = 1 

n = 2 R
2
-space = set of all ordered pair of real numbers ),( 21 xx

n = 3  R
3
-space = set of all ordered triple of real numbers ),,( 321 xxx

(R
1
-space can be represented geometrically by the x-axis) 

(R
2
-space can be represented geometrically by the xy-plane) 

(R
3
-space can be represented geometrically by the xyz-space) 
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 Notes: 

 Ex: 

a point 

 21, xx

a vector 

 21, xx

 0,0

(1) An n-tuple                        can be viewed as a point in R
n
 

with the xi’s as its coordinates 

(2) An n-tuple                        also can be viewed as a vector  

                                  in R
n
 with the xi’s as its components 

),,,( 21 nxxx 

),,,( 21 nxxx 

1 2( , , , )nx x xx

※ A vector on the plane is expressed geometrically by a directed line segment 

whose initial point is the origin and whose terminal point is the point (x1, x2) 

or 
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   1 2 1 2, , , ,   , , ,n nu u u v v v u v (two vectors in R
n
) 

 Equality: 

              if and only if                                                 vu 

 Vector addition (the sum of u and v): 

 nn vuvuvu   , , , 2211 vu

 Scalar multiplication (the scalar multiple of u by c): 

 ncucucuc ,,, 21 u

 Notes: 

       The sum of two vectors and the scalar multiple of a vector 

        in R
n
 are called the standard operations in R

n 

1 1 2 2,  ,  ,  n nu v u v u v  
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  Difference between u and v:  

1 1 2 2 3 3( 1) ( ,  ,  ,...,  )n nu v u v u v u v        u v u v

  Zero vector 

)0 ..., ,0 ,0(0
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 Notes:   

A vector                               in        can be viewed as: ),,,( 21 nuuu u nR

1 2[   ]nu  u uu





















nu

u

u



2

1

u

※ Therefore, the operations of matrix addition and scalar multiplication 

generate the same results as the corresponding vector operations (see the 

next slide) 

or 

 

       a n×1 column matrix (column vector): 

a 1×n row matrix (row vector): 

Use comma to separate components 

Use blank space to separate entries 
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),  , ,(

) , , ,() , , ,(

2211

2121

nn

nn

vuvuvu

vvvuuu







vu

1 2 1 2

1 1 2 2

[    ] [    ]

[    ]

n n

n n

u u u v v v

u v u v u v

  

   

u v



































































nnnn vu

vu

vu

v

v

v

u

u

u



22

11

2

1

2

1

vu

Vector addition Scalar multiplication 









































nn cu

cu

cu

u

u

u

cc


2

1

2

1

u

), ,,(

),,,(

21

21

n

n

 cucucu

 u uucc







u

1 2

1 2

[ ]

[    ]

n

n

c c u  u   u

cu cu cu





u

Regarded as 1×n row matrix 

Regarded as n×1 column matrix 
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Properties of vector addition and scalar multiplication 

            Let u, v, and w be vectors in R
n
, and let c and d  be scalars 

(1)  u+v is a vector in R
n (closure under vector addition) 

(2)  u+v = v+u (commutative property of vector addition) 

(3)  (u+v)+w = u+(v+w) (associative property of vector addition) 

(4)  u+0 = u (additive identity property) 

(5)  u+(–u) = 0 (additive inverse property) 

(6)  cu is a vector in R
n
 (closure under scalar multiplication) 

(7)  c(u+v) = cu+cv (distributive property of scalar multiplication over vector 
addition) 

(8)  (c+d) u = cu+du (distributive property of scalar multiplication over real-
number addition) 

(9)  c (d u) = (cd)u (associative property of multiplication) 

(10) 1(u) = u (multiplicative identity property) 

(Note that –u is just the notation of the additive inverse 

of u, and –u = (–1)u will be proved next) 
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 Ex 5: Practice standard vector operations in R4 

 

Sol: (a) 

Let u = (2, –1, 5, 0), v = (4, 3, 1, –1), and w = (–6, 2, 0, 3) be 

vectors in R
4
. Solve x in each of the following cases. 

  (a) x = 2u – (v + 3w) 

  (b) 3(x+w) = 2u – v+x  

2 ( 3 )

2 ( 1)( 3 )

2 3

(4,  2,  10,  0) (4,  3,  1,  1) ( 18,  6,  0,  9)

(4 4 18,  2 3 6,  10 1 0,  0 1 9)

(18,  11,  9,  8)

  

   

  

     

         

  

x u v w

u v w

u v w
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(b) 

     

 

31
2 2

3 91 1
2 2 2 2

911
2 2

3( ) 2

3 3 2

3 2 3

2 2 3

2, 1,5,0 2, , , 9, 3,0,

9, , , 4

 



   

   

   

  

  

     

 

x w u v x

x w u v x

x x u v w

x u v w

x u v w
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 (Properties of additive identity and additive inverse) 

   Let v be a vector in R
n 
and c be a scalar. Then the following 

properties are true 

(1) The additive identity is unique, i.e., if v+u = v, u must be 0 

(2) The additive inverse of v is unique, i.e., if v+u = 0, u must be –v 

(3) 0v = 0 

(4) c0 = 0 

(5) If cv = 0, either c = 0 or v = 0 

(6) –(–v) = v 

 Notes: 

(1) The zero vector 0 in R
n
 is called the additive identity in R

n 

(2) The vector –u is called the additive inverse of u 
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  Linear combination (線性組合) in R
n
: 

 Ex 6: 

Given x = (–1, –2, –2), u = (0,1,4), v = (– 1,1,2), and 

 w = (3,1,2) in R
3
, find a, b, and c such that x = au + bv + cw.    

Sol: 

2224

2

13







cba

cba

cb

1  ,2  ,1  cba

wvux  2  Thus

The vector x is called a linear combination of                   ,                  

 if it can be expressed in the form  

1 2, ,..., nv v v

1 2 1 2, where ,  , ,   are real numbersn n nc c c c c c   1 2x v v v
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4.2 Vector Spaces 

 Vector spaces 

Let V be a set on which two operations (addition and scalar 

multiplication) are defined. If the following ten axioms are 

satisfied for every element u, v, and w in V and every scalar (real 

number) c and d, then V is called a vector space, and the 

elements in V are called vectors 

Addition: 

(1)  u+v is in V 

(2)  u+v = v+u 

(3)  u+(v+w) = (u+v)+w 

(4)  V has a zero vector 0 such that for every u in V, u+0 = u 

(5) For every u in V, there is a vector in V denoted by –u  

      such that u+(–u) = 0      
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Scalar multiplication: 

(6)        is in V    uc

(7)                                    vuvu ccc  )(

(8)      uuu dcdc  )(

(9)      uu )()( cddc 

(10)          uu )(1
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 Notes: 

A vector space consists of four entities: 

V: nonempty set of vectors 

 c: any scalar 

( , ) :

( , ) :c c

  

 

u v u v

u u

vector addition 

scalar multiplication 

 , ,V   is called a vector space 

a set of vectors, a set of real-number scalars, and two operations 

※ The set V together with the definitions of vector addition and scalar 

multiplication satisfying the above ten axioms is called a vector space 
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 Four examples of vector spaces are shown as follows.  

(1) n-tuple space: R
n 

 ),,(),,(),,( 221122121 nnn vuvuvuvvvuuu  

),,(),,( 2121 nn kukukuuuuk  

(2) Matrix space): 
m nV M 

Ex: (m = n = 2) 
































22222121

12121111

2221

1211

2221

1211

vuvu

vuvu

vv

vv

uu

uu



















2221

1211

2221

1211

kuku

kuku

uu

uu
k

(standard matrix addition) 

(standard scalar multiplication for matrices) 

(standard vector addition) 

(standard scalar multiplication for vectors) 

(the set of all m×n matrices with real-number entries) 
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(3) n-th degree or less polynomial space:              

     (the set of all real-valued polynomials of degree n or less) 
nV P

n

nn xbaxbabaxqxp )()()()()( 1100  
n

nxkaxkakaxkp  10)(

(4) Continuous function space :              

  (the set of all real-valued continuous functions defined on the 

    entire real line) 

)()())(( xgxfxgf 

( , )V C  

)())(( xkfxkf 

※ By the fact that the set of real numbers is closed under addition and 

multiplication, it is straightforward to show that Pn satisfies the ten axioms 

and thus is a vector space 

※ By the fact that the sum of two continuous function is continuous and the 

product of a scalar and a continuous function is still a continuous 

function,                 is a vector space ( , )C  

(standard polynomial 

addition) 

(standard scalar multiplication for 

polynomials) 

(standard addition for functions) 

(standard scalar multiplication for functions) 
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 Summary of important vector spaces 

2

3

set of all real numbers

set of all ordered pairs

set of all ordered triples

set of all -tuples

( , ) set of all continuous functions defined on the real number line

[ , ] set of all continuo

n

R

R

R

R n

C

C a b









  



,

,

us functions defined on a closed interval [ , ]

set of all polynomials

set of all polynomials of degree 

set of  matrices

set of  square matrices

n

m n

n n

a b

P

P n

M m n

M n n



 

 

 
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 Notes:  To show that a set is not a vector space, you need  

               only find one axiom that is not satisfied 

  Ex 7: The set of all (exact) second-degree polynomial functions is 

             not a vector space 

 Pf:      Let                  and 
2)( xxp  1)( 2  xxxq

Vxxqxp  1)()(

(it is not closed under vector addition) 

1
2

1 ,  and  is a real-number scalarV

V
2
1

2
1 )1)(( (it is not closed under scalar multiplication) 

 
scalar 

     Pf: 

 Ex 6:  The set of all integers is not a vector space 

integer 
noninteger 
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 Ex 8: 

V=R2=the set of all ordered pairs of real numbers 

vector addition: ),(),(),( 22112121 vuvuvvuu 

scalar multiplication: )0,(),( 121 cuuuc 

)1 ,1()0 ,1()1 ,1(1 

  the set (together with the two given operations) is  

    not a vector space 



 Verify V is not a vector space 

Sol: 

(nonstandard definition) 

This kind of setting can satisfy the first nine axioms of the 

definition of a vector space (you can try to show that), but it 

violates the tenth axiom 
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4.3 Subspaces of Vector Spaces 

 Subspace 

( , , ) :V   a vector space 

:
W

W V

 


 
a nonempty subset of V 

( , , ) :W   The nonempty subset W is called a subspace if W is 

a vector space under the operations of vector 

addition and scalar multiplication defined on V 

 Trivial subspace  

Every vector space V  has at least two subspaces 

(1) Zero vector space {0} is a subspace of  V 

(2)  V is a subspace of  V 

※ Any subspaces other than these two are called proper (or nontrivial) subspaces 

(It satisfies the ten axioms) 
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 Test whether a nonempty subset being a subspace 

If W is a nonempty subset of a vector space V, then W  is  

a subspace of V if and only if the following conditions hold 

(1) If 𝐮 and 𝐯 are in W, then  𝐮 + 𝐯  is in W 

(2) If 𝐮 is in W and c is any scalar, then 𝑐𝐮 is in W 

 Examination of whether W being a subspace 

– Since the vector operations defined on W are the same as 

those defined on V, and most of the ten axioms inherit the 

properties for the vector operations, it is not needed to verify 

those axioms 

– To identify that a nonempty subset of a vector space is a 

subspace, it is sufficient to test only the closure conditions 

under vector addition and scalar multiplication 
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  Ex 2: A subspace of M2×2 

       Let W be the set of all 2×2 symmetric matrices. Show that  

         W is a subspace of the vector space M2×2, with the standard 

operations of matrix addition and scalar multiplication 

2 2

First, we knon that , the set of all 2 2 symmetric matrices, 

    is an nonempty subset of the vector space 

W

M 



Sol: 

 )( 21212121 AAAAAAWAW,A TTT 

,  ( )  T Tc R A W cA cA cA    

2 2Thus, Thm. 4.5 is applied to obtain that  is a subspace of W M 

1 2( )A A W 

( )cA W

The definition of a symmetric matrix A is that AT = A 

Second,
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1 0

0 1
A B I W

 
    

 

2 2 is not a subspace of W M 

 Ex 3: The set of singular matrices is not a subspace of M2×2 

     Let W be the set of singular (noninvertible) matrices of  

      order 2. Show that W is not a subspace of  M2×2 with the  

      standard matrix operations 

1 0 0 0
,  

0 0 0 1
A W B W

   
      
   

Sol: 

(W is not closed under vector addition) 
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 Ex 4: The set of first-quadrant vectors is not a subspace of R
2
 

     Show that                                                    , with the standard  

       operations, is not a subspace of R
2
 

 

  Sol: 

Let (1,  1) W u

2 is not a subspace of  W R

}0 and 0:),{( 2121  xxxxW

       W 1 ,11 ,111 u
(W is not closed under scalar multiplication) 
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 Ex 6: Identify subspaces of R
2 

       Which of the following two subsets is a subspace of R
2
? 

       (a) The set of points on the line given by 𝑥 + 2𝑦 = 0 

       (b) The set of points on the line given by 𝑥 + 2𝑦 = 1 

Sol: 

   RtttyxyxW  ),2(02),(   (a)

   1 1 1 2 2 2Let 2 , and 2 ,t t W  t t W     v v

  1 2 1 2 1 22 ,t t t t W     v v

  1 1 12 ,c ct ct W  v

2 is a subspace of W R

(closed under vector addition) 

(closed under scalar multiplication) 

(Note: the zero vector 

(0,0) is on this line) 
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     12,  yxyxW

Consider (1,0) W v

   1 1,0 W   v
2 is not a subspace of  W R

(b) (Note: the zero vector (0, 0) is not on this line) 

 Notes: Subspaces of  R
2 

 (1)  consists of the  0, 0W single point 0

(2)  consists of all points on a  passing through the originW line
2(3) R

(trivial subspace) 

(trivial subspace) 
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 Ex 8: Identify subspaces of R
3 

 

 RxxxxxxW

RxxxxW

R





313311

2121

3

,),,(   (b)

,)1,,(   (a)

? of subspace a is subsets following  theofWhich 

Sol: 
(a)

( 1) (0,0, 1) W   v
3 is not a subspace of  W R

(Note: the zero vector is not in W) 

(Note: the zero vector is in W) 

Consider (0,0,1) W v
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1 1 3 3 1 1 3 3Consider ( , , )  and ( , , )v v v v W u u u u W     v u

    1 1 1 1 3 3 3 3, ,v u v u v u v u W       v u

    1 1 3 3, ,c cv cv cv cv W  v

3

 is closed under vector addition and scalar multiplication,

   so  is a subspace of 

W

W R



(b)
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 Notes: Subspaces of  R
3 

3(4) R

 (1)  consists of the  0,0,0W single point 0

(2)  consists of all points on a  passing through the originW line

(3)  consists of all points on a  passing through the origin

      (The  in problem (b) is a plane passing through the origin)

W plane

W

※ According to Ex. 6 and Ex. 8, we can infer that if W is a subspace of a 

vector space V, then both W and V must contain the same zero vector 0 

(trivial subspace) 

(trivial subspace) 
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 Note: The intersection of two subspaces is a subspace 

If   and  are both subspaces of a vector  space  , 

then the intersection of  and  (denoted by )

is also a subspace of 

V W U

V W V W

U



 However, the union of two subspaces is not a subspace. Prove 

that 



 

 Chapter 7  

Eigenvalues and Eigenvectors 

7.1  Eigenvalues and Eigenvectors 

7.2  Diagonalization 

7.3  Symmetric Matrices and Orthogonal Diagonalization  

7.4  Application of Eigenvalues and Eigenvectors 

7.5  Principal Component Analysis 

 7.1 
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7.1 Eigenvalues and Eigenvectors 

 Eigenvalue problem  (one of the most important problems in the 
linear algebra): 

If A is an nn matrix, do there exist nonzero vectors x in R
n
 

such that Ax is a scalar multiple of x?  

 Eigenvalue and Eigenvector: 

A: an nn matrix 

: a scalar (could be zero) 

x: a nonzero vector in R
n 

A x x
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※ Geometric Interpretation 

(The term eigenvalue is from the German word Eigenwert, meaning 

“proper value”) 

x
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 Ex 1:  Verifying eigenvalues and eigenvectors 
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※ In fact, for each eigenvalue, it 

has infinitely many eigenvectors. 

For  = 2, [3 0]T or [5 0]T are 

both corresponding eigenvectors. 

Moreover, ([3 0] + [5 0])T  is still 

an eigenvector. The proof is in 

Thm. 7.1. 
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 Thm. 7.1: The eigenspace corresponding to  of matrix A 

If A is an nn matrix with an eigenvalue , then the set of all 

eigenvectors of  together with the zero vector is a subspace 

of R
n
. This subspace is called the eigenspace of  
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 Ex 3: Examples of eigenspaces on the xy-plane 

For the matrix A as follows, the corresponding eigenvalues 

are 1 = –1 and 2 = 1: 
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For the eigenvalue 1 = –1, corresponding vectors are any vectors on the x-axis 
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For the eigenvalue 2 = 1, corresponding vectors are any vectors on the y-axis 

※ Thus, the eigenspace 
corresponding to  = –1 is the x-
axis, which is a subspace of R2 

※ Thus, the eigenspace 
corresponding to  = 1 is the y-
axis, which is a subspace of R2 
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※ Geometrically speaking, multiplying a vector (x, y) in R2  by the matrix A 

corresponds to a reflection to the y-axis, i.e., left multiplying A to v can 

transform v to another vector in the same vector space 
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(1) An eigenvalue of A is a scalar  such that                           

 Thm. 7.2: Finding eigenvalues and eigenvectors of a matrix AMnn  

det( ) 0I A  

(2) The eigenvectors of A corresponding to  are the nonzero 

      solutions of                        

 Characteristic polynomial of AMnn: 
1

1 1 0det( ) ( ) n n

nI A I A c c c    

       

 Characteristic equation of A: 

det( ) 0I A  

( )I A  x 0

Let A be an nn matrix. 

                       has nonzero solutions for x iff                            ( )I A  x 0 det( ) 0I A  

 Note: follwing the definition of the eigenvalue problem 

(homogeneous system)     ( )A A I I A       x x x x x 0

(The above iff results comes from the equivalent conditions on Slide 4.101) 
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 Ex 4: Finding eigenvalues and eigenvectors 
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 Ex 5: Finding eigenvalues and eigenvectors 

Find the eigenvalues and corresponding eigenvectors for 

the matrix A. What is the dimension of the eigenspace of 

each eigenvalue? 
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The eigenspace of λ = 2: 
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Thus, the dimension of its eigenspace is 2 


